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Introduction

1. History and reasons for choosing the topic

In recent years, Value Distribution Theory for holomorphic curves, also known

as Nevanlinna-Cartan Theory, has attracted the research attention of many do-

mestic and foreign mathematicians. Considered to have begun with the works of

H. Cartan in 1933 when he formulated the first and second forms of fundamental

theorems for holomorphic curves, the Nevanlinna-Cartan Theory is considered one

of its achievements. The results are profound, beautiful and have many applica-

tions in different fields of Mathematics such as the unique problem for holomor-

phic curves, degeneracy of algebraic curves, dynamical system theory, differential

equations. complexes and a number of other fields.

Let K be an algebraically closed field of characteristis 0, completed with respect

to a non-Archimedean absolute value, W is C or K and Pn(W) be the projective

space of dimension n over W. Let f : C→Pn(C) be a holomorphic map where

(f0, . . . , fn) be a reduced representative of f . The function

Tf(r) =
1

2π

∫ 2π

0
log ∥f(reiθ)∥dθ

is called the Nevanlinna-Cartan characteristic function of f , where ∥f(z)∥ =

max{|f0(z)|, . . . , |fn(z)|}.
Let H be a hyperplane, L be a linear form defined in H and let M is a positive

integer. Let nf(r,H) be the number of zeros of L(f)(z) in the disk {|z| ⩽ r},
counting multiplicity, and nM

f (r,H) be the number of zeros of L(f)(z) in the disk

{|z| ⩽ r}, truncated multiplicity by a positive integer M . The function

Nf(r,H) = Nf(r, L) =

∫ r

0

nf(t,H)− nf(0, H)

t
dt+ nf(0, H) log r
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is called the counting function and the function

NM
f (r,H) = NM

f (r, L) =

∫ r

0

nM
f (t,H)− nM

f (0, H)

t
dt+ nM

f (0, H) log r

is called the truncated counting function by M of f with respect to H.

In 1933, H. Cartan proved the following:

Theorem A. Let f : C→Pn(C) be a linearly non-degenerate holomorphic

curve and let H1, . . . , Hq be hyperplanes in Pn(C) in the general position. Thus,

we get

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nn
f (r,Hj) + o(Tf(r))

holds for r > 0 outside a set of finite Lebesgue measure.

Theorem A gives us a relationship between the characteristic function of linear

non-degenerate holomorphic curves with truncated multiple count functions with

the target being hyperplanes in general position. This work of H. Cartan is con-

sidered extremely important, opening up a new research direction for developing

Nevanlinna theory - researching the second main theorem forms for meromorphic,

holomorphic mapping and other forms of theorem. Recent research results in this

direction is focus on two issues:

1. Construct the forms of Second Main Theorem for holomorphic curves from

Wp or a domain in Wp to Pn(W) or a algebraic variety map in Pn(W) with the

target of the hyperplanes, fixed hypersurfaces or moving by establishing a relation-

ship between the Nevanlinna-Cartan characteristic with the proximity functions

or different form of counting functions.

2. Research the applications of forms of the Second Main Theorem in various

areas of mathematics, for example, the properties of defect, the unique problem

for holomorphic functions or curves, the degeneracy of algebraic curves and some

other fields.

According to the first research direction, following the work of H. Cartan, many

authors have built forms of the second main theorem by establishing inequality re-

lationships between the Characteristic function of a holomorphic curve with prox-

imity and counting functions ignoring of multiples or truncated multiple counting
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functions. Specifically, in 1983, E. I. Nochka proved an extension of Theorem A

to the case of a family of hyperplanes at subgeneral positions in the complex pro-

jective space Pn(C). In 1995, H. H. Khoai and M. V. Tu studied Theorem A for

the case of holomorphic curves on the field K and obtained the results:

Theorem B. Let f : K → Pn(K) be a linearly non-degenerate holomorphic

curve and let H1, . . . , Hq be arbitrary hyperplanes in Pn(K) in general position.

Then

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nn
f (r,Hj)−

n(n+ 1)

2
log r +O(1).

P. C. Hu and C. C. Yang extended the results of H. H. Khoai and M. V. Tu to the

case of the hyperplane family in the subgeneral position. In recent years, many

domestic and foreign authors have researched forms of the Second Main Theorem

for holomorphic curves from Wm or a domain over Wm into Pn(W) or an internal

projective algebraic manifold in W, in cases where the target is fixed or mobile

hyperplanes or hypersurfaces, with different types of counting functions. Such as

M. Ru, Q. M. Yan and Z. H. Chen, G. Dethloff, T. V. Tan, D. D. Thai, D. D. Thai,

S. D. Quang, L. Shi, T. T. H. An and H. T. Phuong, H. T. Phuong and N. V.

Thin, H. T. Phuong and L. Vilaisavanh, P. C. Hu, N. V. Thin and many other

authors.

In 2014, based on studies on non-point multiplets of non-trivial linear combina-

tions of a finite family of holomorphic functions on the complex plane at a point,

J. M. Anderson and A. Hinkkanen introduced a concept new counting function,

called the reduced counting function, and prove a form of the Second Main The-

orem with this reduced counting function for the case where the target is fixed

hyperplanes.

Let f : W→Pn(W) be a holomorphic curve and (f0, . . . , fn) be a reduced

representative of f . Denote L = L(f0, . . . , fn) be the set of all of non-trivial

linear combinations of f0, . . . , fn. From Lemma 1.4 we see, for each z0 ∈ W, the

possible orders of zeros of functons in L at z0 form the sequence such that

0 = d0(z0) < d1(z0) < · · · < dn(z0).

With the hyperplane H defined by the linear form L, obviously L(f) ∈ L should
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exist j ∈ {0, . . . , n} such that order of zero of L(f) at z0 equals dj(z0), i.e.

ordL(f)(z0) = dj(z0). We say ν(H, z0) = j is the reduced multiplicity of zero of

L(f) at z0, also known as the reduced multiple of f combine with the hyperplane

H at z0 and ε(H, z0) = dj− j is the excess of L(f) at z0, also known as the excess

multiple of f combine with the hyperplane H at z0.

Definition 1. For each r > 0, we denote νf(r,H) =
∑
|z|⩽r

ν(H, z). And

Nf(r,H) =

∫ r

0

νf(t,H)− νf(0, H)

t
dt+ νf(0, H) log r

function is called reduced counting function of the function f combined with the

hyperplane H.

From the definition we see that ν(H, z0) ⩽ min{dj, n} so νf(r,H) ⩽ nn
f(r,H).

Nf(r,H) ⩽ Nn
f (r,H). (1)

Let H = {H1, . . . , Hq} be a collection of hyperplanes in general position in

Pn(W) and Lj is a linear form defined as Hj, j = 1, 2, . . . , q. Put

H =
L1(f)L2(f) . . . Lq(f)

W
,

where W be the Wronskian determinant of f0, . . . , fn. From Lemma 1.6, for each

arbitrary z0 we always have
∑q

j=1 ε(Hj, z0) ⩽ ordW (z0). Put

V(H, z) = ordW (z0)−
q∑

j=1

ε(Hj, z) ⩾ 0.

And denote

Vf(r,H) =
∑
|z|⩽r

V(H, z).

Definition 2. Function

Uf(r,H) =

∫ r

0

Vf(t,H)− Vf(0,H)

t
dt− Vf(0,H) log r

is called the excess multiple count function at the zero points of the function f

combined with the collection of hyperplanes H.

In 2014, J. M. Anderson and A. Hinkkanen proved
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Theorem C. Let f : C → Pn(C) be a linearly non-degenerate holomorphic curve,

and let H = {H1, . . . , Hq} be a collection of q ⩾ n + 1 hyperplanes in Pn(C) in

general position. Then we have

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nf(r,Hj)− Uf(r,H)−N(r,H)

+O(log r) +O(log Tf(f)), (2)

as r→∞ outside a set of finite linear measure.

Note that, from (1) we see that the truncated multiple counting function

Nf(r,Hj) in Theorem C is smaller than the truncated multiple counting function

in Cartan’s work, so it is a resulting improvement of H. Cartan. This work will

suggest to us a new research problem in Nevanlinna-Cartan theory: considering

the forms of the Second Main Theorem with reduced counting functions.

According to the second research direction, in this thesis we focus on studying

the application of Nevanlinna-Cartan theory in the unique problem of meromor-

phic and holomorphic curves. The first results in this direction of research belong

to H. Fujimoto when he extended the Five Point Theorem of R. Nevanlinna to

meromorphic mapping. After that, this problem immediately attracted the atten-

tion of many authors and obtained many important results.

Let U be a domain inW, denoted by F as a family of non-constant holomorphic

mappings from U into Pn(W). A collection hypersurfaces D is said to be unique

range set ignoring multiplicity, denoted by URSIM (or unique range set counting

multiplicity, denoted by URSCM) for a family of holomorphic maps F if for any

pair of holomorphic maps f, g ∈ F , the condition Ef(D) = Eg(D) (reps. Ef(D) =

Eg(D)) implies f ≡ g. The URSIM, URSCM are called the unique range set for

a family of holomorphic maps F to the same.

In his works H. Fujimoto proved the existence of unique definite sets including

multiples consisting of 3n + 2 hyperplane in general position for the family of

linearly non-degenerate complex meromorphic maps and 2n + 3 hyperplane in

general position gives a family of complex meromorphic maps that are not alge-

braically degenerate. In 1983, L. Smiley showed existence of uniquely defined sets
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regardless of multiples consisting of 3n + 2 hyperplane for complex holomorphic

curves and H. Fujimoto studied this problem again in 1998. In 2006, G. Dethloff

and T. V. Tan considers the same problem for the case of mobile hyperplanes. In

2006, D. D. Thai and S. D. Quang considered the problem solely in the case where

the target is 3n+1 hyperplane. In 2008, M. Dulock and M. Ru and in 2009, H. T.

Phuong proved some results on the unique problem in the case of hypersurfaces

for holomorphic curves on complex planes. In 2009, Z. Chen, Q. Yan and in 2010,

G. Dethloff, T. V. Tan showed unique sets for holomorphic curves consisting of

2n+ 3 hyperplane.

Denote R0 > 1 be a fixed positive real number or +∞ and

∆ = {z ∈ C :
1

R0
< |z| < R0}

be an annulus in C . In 2013, H. T. Phuong and T. H. Minh proved a unique

theorem for holomorphic curves on annulus in the case where the target is hyper-

planes in general position, and in 2021, H. T. Phuong and L. Vilaisavanh study

this problem in the case of hypersurfaces in general positions for Veronese embed-

dings. Recently, authors have continued to develop unique definitions for different

classes of curves with the target being hyperplanes or hypersurfaces, fixed or mo-

bile. Note that most proofs of unique domain results rely on forms of the second

main theorem.

Thus, continuing to develop the forms of the second main theorem by estab-

lishing the relationship between characteristic functions and counting function

forms and the application of these theorems in the unique problem of differential

and rectilinear mappings. Image is absolutely necessary. Currently, these research

issues are being developed strongly, attracting the attention of many authors and

many works being published. The choice of the topic "On the Cartan-type

second main theorem for reduced counting functions and uniqueness

problem" of the author of this thesis is also to further develop some forms of the

Fundamental Theorem. secondly with the truncated counting function, the trun-

cated multiple counting function for the holomorphic curve on the field W and

construct some sufficient conditions for the unique problem for the holomorphic
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curve on an annulus.

2. Purpose and research object

• Research object:

In this thesis, we focus on researching the properties of holomorphic curves

on the non-Archimedean field or on the field of complex numbers C and

holomorphic curves on the annulus in the complex plane. These are also the

basic research objects of the Nevanlinna-Cartan value distribution theory.

• Purpose:

In this thesis, we research in two directions as follows:

The first direction of research: Construct some forms of the second main

theorem for holomorphic curves on a non-Archimedean field or in the com-

plex plane C with the targets being hyperplanes in general or sub-general

positions by setting The relationship between the Nevanlinna-Cartan charac-

teristic function and the reduced counting function.

The second direction of research: Establish some sufficient conditions so that

the two holomorphic curves on an annulus are coincident in case the target

is hypersurfaces in general position.

3. Overview of the thesis

For the first research direction, we have built some forms of the Second Main

Theorem as follows:

Theorem 1 (Theorem 1.7, Chapter 1). Let f = (f0 : · · · : fn) : K→Pn(K)

be a linearly non-degenerate holomorphic curve, and let H = {H1, . . . , Hq} be a

collection of q ⩾ n+ 1 hyperplanes in Pn(K) in general position. Then we have

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nf(r,Hj)− Uf(r,H)−N(r,H)

− n(n+ 1)

2
log r +O(1),
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as r→∞ outside a set of finite linear measure.

Theorem 2 (Theorem 2.4, Chapter 2).

Let f : K → Pn(K) be a linearly non-degenerate holomorphic curve, and let

H = {H1, . . . , Hq} be a collection of q ⩾ 2N − n + 1 hyperplanes in Pn(K) in

N−subgeneral position. Then we have

(q − 2N + n− 1)Tf(r) ⩽
q∑

j=1

Nf(r,Hj)−
N

n
Uf(r,H)− N

Mn
N(r,Φ)

− (N + 1)n

2
log r +O(1),

as r→∞ outside a set of finite linear measure.

Theorems 1 and 2 are two forms of the Second Main Theorem with a reduced

counting function for holomorphic curve on non-Archimedean field K in two cases:

a collection of hyperplanes in general position and in subgeneral position in Pn(K).

For the holomorphic curve on the field of complex numbers we obtain the result:

To prove the result on the unique problem for holomorphic curves on an an-

nulus, we proved a form of the Second Main Theorem with truncated multiplets.

Specifically, let f : ∆→Pn(C). We denote

Of(r) =

O(log r + log Tf(r)) if R = +∞

O(log
1

R0 − r
+ log Tf(r)) if R < +∞.

Theorem 3 (Theorem 2.13, Chapter 2). Let f : ∆ → Pn(C) be an alge-

braically non-degenerate holomorphic curve, and let Dj, 1 ⩽ j ⩽ q, be hypersur-

faces in Pn(C) of degree dj in general position. Let d is the least common multiple

of the dj and set M =
(
n+d
n

)
− 1. Then, for any 1 < r < R0 and q ⩾ M + 1, we

have

∥ (q −M − 1)Tf(r) ⩽
q∑

j=1

1

dj
NM

f (r,Dj) +Of(r). (3)

Theorem 3 is a form of the Second Main Theorem with a truncated multiplicity

function for the holomorphic curve on an annulus.

Let D = {Dj, j = 1, . . . , q} be a collection of q hypersurfaces of degree dj in
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general position. Let d be the least common multiple of the dj. Set

δD := min{d1, . . . , dq}, nD =

(
n+ d

n

)
− 1

and

B(D) = (d(n+ 1)22n+1 + 1)n.

For holomorphic mapping f : ∆→Pn(C), we denote

Ef(Dj) = {z ∈ ∆ | (Dj, f)(z) = 0 ignoring multiplicity}

and set

Ef(D) =
⋃

Dj∈D
Ef(Dj).

The results on the uniqueness problem for holomorphic curves on an annulus we

obtained in this thesis are as follows:

Theorem 4 (Theorem 3.2, Chapter 3). Let D = {D1, . . . , Dq} be a collection

of q hypersurfaces in general position and f, g : ∆→Pn(C) be algebraically non-

degenerate holomorphic curves such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)).

Assume that

a) Ef(Di) ∩ Ef(Dj) = ∅ for any i ̸= j ∈ {1, . . . , q};
b) Ef(Dj) ⊂ Eg(Dj) for any j = 1, 2, . . . , q and f(z) = g(z) for all z ∈

Ef(D).

c) lim inf
r→R0

∑q
j=1N

1
f (r,Dj)/

∑q
j=1N

1
g (r,Dj) >

M

M + 1
.

If q ⩾ 2M + 3, then there exists a subset S ⊂ {1, . . . , q} such that #S > M + 1

and

(f,Dk)
d/dk

(f,Dl)d/dl
≡ (g,Dk)

d/dk

(g,Dl)d/dl
for all k ̸= l ∈ S. (4)

Theorem 4 gives us a result on the uniqueness problem of algebraically non-

degenerate holomorphic curves on annulus sharing hypersurfaces.

Theorem 5 (Theorem 3.5, Chapter 3).

Let f and g be algebraically non-degenerate holomorphic curves from ∆ into

Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let D = {D1, . . . , Dq}
be a collection of q > n + 1 + 2Mn/δD hypersurfaces in general position Pn(C)

such that f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D). Then f ≡ g.
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Theorem 6 (Theorem 3.6, Chapter 3).

Let f and g be algebraically non-degenerate holomorphic curves from ∆ into

Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let D = {D1, . . . , Dq}
be a collection of q > n+ 1 + 2M/δD hypersurfaces in general position in Pn(C)

such that

(a) f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D),

(b) Ef(Di)∩Ef(Dj) = ∅ and Eg(Di)∩Eg(Dj) = ∅ for all i ̸= j ∈ {1, . . . , q}.
Then f ≡ g.

Theorems 5 and 6 are algebraic conditions to uniquely determine the holomor-

phic curve on an annulus with the goal of being a collection of hypersurfaces in

general position.

4. Research Methods of the thesis

In this thesis, we use basic research methods: based on research-oriented doc-

uments, we discover open problems that need to be solved and use the knowledge

and techniques of Complex analysis, Nevanlinna-Cartan value distribution theory,

linear algebra, algebraic geometry to propose appropriate methods or use some

existing techniques to solve the problems.

In addition to publication in journals, the main results of the thesis have been

reported at:

• Seminar of the Department of Calculus, Faculty of Mathematics, University

of Education, Thai Nguyen University every year.

• International Conference on Algebra - Number Theory - Geometry - Topology

2019, 04 - 08/12/2019 at Ba Ria-Vung Tau Teacher Training college.

• International Conference on Algebra - Number Theory - Geometry - Topology

2021, 21 - 23/10/2021 at University of Education, Thai Nguyen University.
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Chapter 1

Second main theorem with reduced

counting function for holomorphic

curves on the non-Archimedean field

1.1. Some basic knowledge

Let K be an algebraically closed field of characteristis 0, completed with respect

to a non-Archimedean absolute value (field Cp is an example), W is C or K and

let Pn(W) be the projective space of dimension n over W.

Definition 1.2. Let f be a holomorphic curve from W into Pn(W), then there

exist holomorphic functions f0, . . . , fn on W, where there is at least one non-

uniform function equal to zero such that

f(z) = (f0(z) : · · · : fn(z))

for every z /∈ {f0 = · · · = fn = 0}. We call (f0, . . . , fn) be a representation

of curve f . If functions f0, . . . , fn without common zeros on W then we call

(f0, . . . , fn) be a reduced representative of f .

Definition 1.3. The holomorphic curves f : W→Pn(W) is called linearly degen-

erate if there exists some real linear subspace H of Pn(W) such that f(W) ⊂ H.

The holomorphic curves f is called algebracally degenerate if there exists some

real algebraic subset G of Pn(W) such that f(W) ⊂ G.

Let X be a k-dimensional linear projective subspace of Pn(W), (1 ⩽ k ⩽ n)

and some positive integer N . Let {H1, . . . , Hq} be a collection of q ⩾ N + 1

hyperplanes in Pn(W), where Hj is defined by linear form Lj, 1 ⩽ j ⩽ q. A
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collection {H1, . . . , Hq} is said to be in N−subgeneral position with X if for any

subset {i0, . . . , iN} of {1, . . . , q} of cardinality N + 1, we have

{x ∈ X : Lij(x) = 0, j = 0, . . . , N} = ∅. (1.1)

When k = n, the collection {H1, . . . , Hq} is said to be in N−subgeneral position

(with Pn(W)). If N = n = k, the collection {H1, . . . , Hq} is said to be in general

position.

1.2. Cartan’s second main theorem

Let f0, . . . , fn are entire functions, linear independent without common zeros

on W. Let L = L(f0, . . . , fn) be the set of all of non-trivial linear combinations of

f0, . . . , fn. For z0 is an arbitrary point on W, in 2014, Anderson and Hinkkanen

proved:

Lemma 1.4. For any z0 ∈ C, the possible orders of zeros of functons in L =

L(f0, . . . , fn) at z0 form the sequence d0(z0), d1(z0), . . . , dn(z0) such that

0 = d0(z0) < d1(z0) < · · · < dn(z0).

Lemma 1.4 gives us a property about the possible orders of functions belonging

to L = L(f0, . . . , fn) in the case of holomorphic functions on C at an arbitrary

point. Note that Lemma 1.4 is also true for the non-Archimedean case.

Definition 1.9. The d0(z0), d1(z0), . . . , dn(z0), in the above lemma is said to be

the characteristic exponent of f0, . . . , fn at z0.

The following lemma shows the relationship between the Wronskian of holo-

morphic functions and their characteristic exponent sequence:

Lemma 1.5. Let f0, . . . , fn are entire functions on C without common zeros,

at least one of them is non-constant. For any z0 ∈ C, call d0(z0), . . . , dn(zn) is

characteristic exponent of f0, . . . , fn at z0. Then

i) If W (z0) ̸= 0 then d0(z0) = 0 < d1(z0) < · · · < dn(z0) = n;

ii) If W (z0) = 0 then d0(z0) = 0 < d1(z0) < · · · < dn(z0) depend on z0,
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furthermore the order of the zeros of W at z0 is equal to
n∑

j=1

dj(z0)−
n(n+ 1)

2
.

Lemma 1.5 was proved by Anderson and Hinkkanen in 2014 for the case of

complex meromorphic functions. Note that this is still true in the case of non-

Archimedean holomorphic functions.

Lemma 1.6. Let f : W→Pn(W) be a linearly non-degenerate holomorphic curve

and f = (f0 : · · · : fn) be a reduced representative of f . Let N ⩾ n is an integer.

Assuming H = {H1, . . . , Hq}, q ⩾ N + 1 be a collection of hyperplanes in

N−subgeneral position in Pn(W). Then
q∑

j=1

ε(Hj, z0) ⩽ (N − n+ 1)ordW (z0).

Let f = (f0 : · · · : fn) : K→Pn(K) is a non-Archimedean holomorphic curve

and H be a hyperplane in Pn(K). We denote

νf(r,H) =
∑
|z|⩽r

ν(H, z).

Definition 1.10. The integrated reduced counting function of f is defined by

Nf(r,H) =

∫ r

0

νf(t,H)− νf(0, H)

t
dt+ νf(0, H) log r.

Easy to see

νf(r,H) ⩽ nn
f(r,H)

So we have

Nf(r,H) ⩽ Nn
f (r,H).

Let H = {H1, . . . , Hq} be a collection of H1, . . . , Hq hyperplanes in general

position in Pn(K) and let Lj is the linear form that defining Hj, j = 1, 2, . . . , q.

Set

H =
L1(f)L2(f) . . . Lq(f)

W
,

where W is the Wronskian determinant of f0, f1, . . . , fn. From Lemma 1.6, for

each arbitrary z0 we always have
q∑

j=1

ε(Hj, z0) ⩽ ordW (z0).
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Set

V(H, z) = ordW (z0)−
q∑

j=1

ε(Hj, z) ⩾ 0.

And denote

Vf(r,H) =
∑
|z|⩽r

V(H, z).

Definition 1.11. Call

Uf(r,H) =

∫ r

0

Vf(t,H)− Vf(0,H)

t
dt− Vf(0,H) log r

the counting function of the unrealized excesses for H.

The following theorem is a Cartan type form of the second main theorem for

non-Archimedean holomorphic curves with reduced counting functions.

Theorem 1.7.Let f = (f0 : · · · : fn) : K→Pn(K) be a linearly non-degenerate

holomorphic curve, and let H = {H1, . . . , Hq} be a collection of q ⩾ n+ 1 hyper-

planes in Pn(K) in general position. Then we have

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nf(r,Hj)− Uf(r,H)−N(r,H)

− n(n+ 1)

2
log r +O(1),

as r→∞ outside a set of finite linear measure.

Notice 1.2. For each holomorphic curve f and for each hyperplane H. From the

definition we can easily see

Nf(r,H) ⩽ Nn
f (r,H).

Therefore, our inequality in Theorem 1.7 is stronger than the inequality in The-

orem B of H. H. Khoai and M. V. Tu.
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Chapter 2

Some forms of the second main

theorem for holomorphic curves

2.1. Cartan-Nochka type theorem for curves on the non-Archimedean

field

For each finite set R, we denote |R| is the number of elements of R. In 1983,

E. I. Nochka have proved the following two results related to collection of hyper-

surfaces in N−subgeneral position.

Lemma 2.1. Let q > 2N − n + 1 and {Hj}qj=1 be a collection of hyperplanes

in Pn(C) in N−subgeneral position. Denote Q = {1, 2, . . . , q}. Then there are

positive rational constants w(j) satisfying the following:

i) 0 < w(j) ⩽ 1 for any j ∈ Q;

ii) Setting w∗ = max
j∈Q

w(j), we have

q∑
j=1

w(j) = w∗(q − 2N + n− 1) + n+ 1;

iii)
n+ 1

2N − n+ 1
⩽ w∗ ⩽

n

N
;

iv) For each R ⊂ Q satisfy 0 < |R| ⩽ N + 1, we have∑
j∈R

w(j) ⩽ rank{Hj}j∈R;

Rational numbers are not negative w(j), j = 1, . . . , q, in Lemma 2.1 is called

Nochka weights and w∗ is called Nochka constant.

Lemma 2.2. Let q > 2N − n + 1 and {Hj}qj=1 be a collection of hyperplanes

in Pn(C) in N−subgeneral position. Let w(j), j ∈ Q, are the Nochka weights
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in Lemma 2.1. Denote Q = {1, 2, . . . , q} and Ej ⩾ 1, j ∈ Q, are arbitrary real

numbers. Then, for each R ⊂ Q with 0 < |R| ⩽ N + 1, there is a subset R0 ⊂ R

such that

|R0| = rank{Hj}j∈R0
= rank{Hj}j∈R,

and ∏
j∈R

E
w(j)
j ⩽

∏
j∈R0

Ej.

Note that, Lemmas 2.1 and 2.2 still holds true in the case collection of hyper-

surfaces in N−subgeneral position in the space Pn(K).

Let H be a hyperplane in Pn(K), we repeat for each z0 ∈ K, ε(H, z0) is the

excess of Hj ◦ f at z0, i.e. ε(H, z0) = dj(z0) − j ⩾ 0 as ordHj◦j(z0) = dj(z0).

We have the following lemma on the relationship between the summation of the

excesses with Nochka weights of the hyperplanes at z0 and the order of Wronskian

of f at z0 in the case of non-Archimedean.

Lemma 2.3. Let f : K → Pn(K) be a linearly non-degenerate holomorphic

curve, and let H = {H1, . . . , Hq} be a collection of q > 2N−n+1 hyperplanes in

Pn(K) in N−subgeneral position. Let w(j), j = 1, . . . , q, are the Nochka weights

in Lemma 2.1. Then for any z0 ∈ K, we have

q∑
j=1

w(j)ε(Hj, z0) ⩽ ordWf
(z0). (2.1)

where ordWf
(z0) is order of Wf at z0.

Let f : K→Pn(K) be a holomorphic curve, where (f0, . . . , fn) be a reduced

representative of f. Let H = {H1, . . . , Hq} be a collection q ⩾ 2N − n + 1 hy-

perplanes in Pn(K) in N−subgeneral position. Let w(j), j = 1, . . . , q, are Nochka

weights of H in Lemma 2.1. For any z ∈ K, we set

V(H, z) = ordWf
(z0)−

q∑
j=1

w(j)ε(Hj, z),

here Wf = W (f0, . . . , fn). It is easy see that V(H, z) ⩾ 0 by Lemma 2.3. For

r ⩾ 0, we set

Vf(r,H) =
∑
|z|⩽r

V(H, z)
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and call

Uf(r,H) =

∫ r

0

Vf(t,H)− Vf(0,H)

t
dt− Vf(0,H) log r

the counting function of the unrealized excesses with Nochka weights for H.

For any j = 1, . . . , q, assume that

w(j) = aj/bj

here aj, bj are non-negative integers and bj ̸= 0. Set M = b1 . . . bq. Set

Φ =
L1(f)

Mw(1) . . . Lq(f)
Mw(q)

WM
f

, (2.5)

here Wf = W (f0, . . . , fn).

In 2023 we proved a form of the second main theorem with a reduced counting

function for a non-Archimedean holomorphic curve associated with a collection

of hyperplanes in N−subgeneral position in projective space Pn(K) as follows:

Theorem 2.4. Let f : K → Pn(K) be a linearly non-degenerate holomorphic

curve, and let H = {H1, . . . , Hq} be a collection of q ⩾ 2N − n + 1 hyperplanes

in Pn(K) in N−subgeneral position. Then we have

(q − 2N + n− 1)Tf(r) ⩽
q∑

j=1

Nf(r,Hj)−
N

n
Uf(r,H)− N

Mn
N(r,Φ)

− (N + 1)n

2
log r +O(1),

as r→∞ outside a set of finite linear measure.

Note that, sinceNf(r,Hj) ⩽ Nn
f (r,Hj) for j = 1, 2, . . . , q, so Theorem 2.4 is an

improved version of Cartan-Nochka’s theorem (Theorem 1.3) for non-Archimedean

holomorphic curves. Furthermore when H is in general position, then N = n and

we can choose w(j) = 1 for j = 1, . . . , q, so M = 1, Φ = H and the counting

function of the unrealized excesses with Nochka weights Uf(r,H) coincides with

the residual counting function. In this case Theorem 2.4 yields Theorem 1.7.

2.2. Theorem for the curve on an annulus

Let R0 > 1 be a fixed positive real number or +∞, set

∆ =
{
z ∈ C :

1

R0
< |z| < R0

}
,
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be an annulus in C. For each real number r satisfying 1 < r < R0, we denote

∆1,r =
{
z ∈ C :

1

r
< |z| ⩽ 1

}
, ∆2,r =

{
z ∈ C : 1 < |z| < r

}
,

∆r =
{
z ∈ C :

1

r
< |z| < r

}
.

Let D be a hypersurfaces in Pn(C) of degree d and Q be the homogeneous

polynomial in C[x0, . . . , xn] of degree d defining D, then

Q(z0, . . . , zn) =
nd∑
k=0

akz
ik0
0 . . . ziknn ,

where nd =
(
n+d
n

)
− 1 and ik0 + · · ·+ ikn = d for k = 0, . . . , nd, we denote

(f,D) = Q(f) =
nd∑
k=0

akf
ik0
0 . . . f ikn

n .

Next we prove a form of the basic theorem for holomorphic curves on an annulus

for the truncated multiple counting function with the target being the hypersur-

faces in general position, necessary for proving the uniqueness theorem. for the

holomorphic curve on an annulus in Chapter 3. We first introduce Wronskian,

introduce and demonstrate some related knowledge.

Let f0, . . . , fn be holomorphic functions, we denote by W (f0, . . . , fn) is the

Wronskian of the f0, . . . , fn, namely

W (f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn
f ′
0 f ′

1 · · · f ′
n

...
... . . . ...

f
(n)
0 f

(n)
1 · · · f

(n)
n

∣∣∣∣∣∣∣∣∣ .
Proposition 2.10. Let f : ∆ → Pn(C) be a linearly non-degenerate holomorphic

curve and (f0 : · · · : fn) is a reduced representative of f . Then we have for any

1 < r < R0

∥ m0

(
r,
W (f0, . . . , fn)

f0 . . . fn

)
= Of(r). (2.27)

We recall that hypersurfaces D1, . . . , Dq, q > n, in Pn(C) are said to be in

general position if for any distinct i1, . . . , in+1 ∈ {1, . . . , q},
n+1⋂
k=1

supp(Dik) = ∅.
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Proposition 2.11. Let D1, . . . , Dq be q hypersurfaces in Pn(C) of the common

degree d in general position in Pn(C). PutM =
(
n+d
n

)
−1. Then there exist (M−n)

hypersurfaces T1, . . . , TM−n in Pn(C) such that for any subset R ⊂ {1, . . . , q} with
#R = rank{Dj}j∈R = n+ 1, then rank{{Dj}j∈R ∪ {Tj}M−n

j=1 } = M + 1.

Note that the proof of Proposition 2.11 shows that the hypersurfaces Tj, j =

1, . . . ,M − n have the same degree d.

In 2022, H.T. Phuong and L. Vilaisavanh proved the following theorem called

the first main theorem for holomorphic curves on an annulus.

Proposition 2.12. Let D be a hypersurface in Pn(C) of degree d and f = (f0 :

· · · : fn) : ∆→Pn(C) be a holomorphic curve whose image does not contain D.

Then we have for any 1 < r < R0

mf(r,D) +Nf(r,D) = dTf(r) +O(1).

Now we prove a form of second main theorem for holomorphic curves on an

annulus combined with hypersurfaces.

Theorem 2.13. Let f : ∆ → Pn(C) be an algebraically non-degenerate holomor-

phic curve, and let Dj, 1 ⩽ j ⩽ q, be hypersurfaces in Pn(C) of degree dj in general

position. Let d is the least common multiple of the dj and set M =
(
n+d
n

)
− 1.

Then, for any 1 < r < R0 and q ⩾ M + 1, we have

∥ (q −M − 1)Tf(r) ⩽
q∑

j=1

1

dj
NM

f (r,Dj) +Of(r). (2.32)
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Chapter 3

Uniqueness theorem for holomorphic

curves on an annulus

3.1. Chen-Yan type uniqueness theorem

In this section we prove a uniqueness form of Yan-Chen type theorem for holo-

morphic curves on an annulus. To prove the uniqueness theorem, we need the

following supporting results:

Proposition 3.1. Let f : ∆→Pn(C) be an algebraically non-degenerate holo-

morphic curve and D1, D2 be distinct hypersurfaces of the same degree d. Then

T0

(
r,
(f,D1)

(f,D2)

)
⩽ dTf(r) +O(1), (5)

for any r such that 1 < r < R0.

For f, g : ∆→Pn(C) be an algebraically non-degenerate holomorphic curves,

we denote

T (r) = Tf(r) + Tg(r).

For each Dj ∈ D hypersurfaces, where D = {D1, . . . , Dq} be a collection of

hypersurfaces and δ be a positive integer, we set

Fj(δ) =
δ−1∑
t=1

(δ − t)N f,=t(r,Dj); Gj(δ) =
δ−1∑
t=1

(δ − t)N g,=t(r,Dj).

Let D = {D1, . . . , Dq} be a collection of q hypersurfaces in general position.

We denote the degree of Dj by dj for j = 1, . . . , q and let d be the least common

multiple of the dj. Set M =
(
n+d
d

)
− 1. The following theorem is a unique form of

Yan-Chen type theorem for holomorphic curves on an annulus that we announced

in 2023.
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Theorem 3.2.Let D = {D1, . . . , Dq} be a collection of q hypersurfaces in general

position and f, g : ∆→Pn(C) be algebraically non-degenerate holomorphic curves

such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Assume that

a) Ef(Di) ∩ Ef(Dj) = ∅ for any i ̸= j ∈ {1, . . . , q};
b) Ef(Dj) ⊂ Eg(Dj) for any j = 1, 2, . . . , q and f(z) = g(z) for all z ∈

Ef(D).

c) lim inf
r→R0

∑q
j=1N

1
f (r,Dj)/

∑q
j=1N

1
g (r,Dj) >

M

M + 1
.

If q ⩾ 2M + 3, then there exists a subset S ⊂ {1, . . . , q} such that #S > M + 1

and
(f,Dk)

d/dk

(f,Dl)d/dl
≡ (g,Dk)

d/dk

(g,Dl)d/dl
for all k ̸= l ∈ S. (3.6)

To prove Theorem 3.2, we need the following Proposition.

Proposition 3.3. Under the assumption of Theorem 3.2 and let D1, . . . , Dq have

the same degree d. Then for any positive integer δ > 0 and for any k ̸= l ∈
{1, . . . , q} such that Φ =

(f,Dk)

(f,Dl)
− (g,Dk)

(g,Dl)
̸≡ 0, we have

δN 1
f (r,Dk) + δN 1

f (r,Dl) +
∑
j

N 1
f (r,Dj)

⩽ dT (r) + Fk(δ) + Fl(δ) +Gk(δ) +Gl(δ) +O(1), (3.7)

where 1 < r < R0 and the sum
∑

j is taken over j ∈ {1, . . . , q}\{k, l}.

3.2. Fujimoto-style uniqueness theorem

To prove the main result, we first introduce some knowledge about counting

functions and a form of second main theorem used for proving theorems. Let f

be a holomorphic curve on ∆, D be a hypersurface and Q is the homogeneous

polynomial defining D. For any real number r : 1 < r < R0, for any positive

integer k and α, we define
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nα
1,f(r,D,⩽ k) =

∑
z∈∆1,r,0<ordQ(f)(z)⩽k

min{ordQ(f)(z), α},

nα
2,f(r,D ⩽ k) =

∑
z∈∆2,r,0<ordQ(f)(z)⩽k

min{ordQ(f)(z), α}

and

Nα
1,f(r,D,⩽ k) =

∫ 1

r−1

nα
1,f(t,D,⩽ k)

t
dt,

Nα
2,f(r,D,⩽ k) =

∫ r

1

nα
2,f(t,D,⩽ k)

t
dt.

We set

Nα
f,⩽k(r,D) = Nα

f (r,D,⩽ k) := Nα
1,f(r,D,⩽ k) +Nα

2,f(r,D,⩽ k).

Similarly, we denote

nα
1,f(r,D,⩾ k) =

∑
z∈∆1,r,ordQ(f)(z)⩾k

min{ordQ(f)(z), α},

nα
2,f(r,D ⩾ k) =

∑
z∈∆2,r,ordQ(f)(z)⩾k

min{ordQ(f)(z), α}.

We define

Nα
1,f(r,D,⩾ k) =

∫ 1

r−1

nα
1,f(t,D,⩾ k)

t
dt,

Nα
2,f(r,D,⩾ k) =

∫ r

1

nα
2,f(t,D,⩾ k)

t
dt.

Set

Nα
f,⩾k(r,D) = Nα

f (r,D,⩾ k) := Nα
1,f(r,D,⩾ k) +Nα

2,f(r,D,⩾ k).

So it is to see that

Nα
f (r,D) = Nα

f (r,D,⩽ k) +Nα
f (r,D,⩾ k + 1)

holds for any integer α and k.

The following statement is a form of second main theorem for holomorphic

curves proposed by H.T. Phuong and L. Vilaisavanh proof in 2022, necessary for

proving the uniqueness theorem forms in this section.
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Proposition 3.4. Let f : ∆ → Pn(C) be an algebraically non-degenerate holo-

morphic curve, and let Dj, 1 ⩽ j ⩽ q, be hypersurfaces in Pn(C) of degree dj

in general position. Let d be the least common multiple of the d1, d2, . . . , dq. For

0 < ε < 1 and

α ⩾
(
d[(n+ 1)22n)ε−1] + 1

)n
.

Then for any 1 < r < R, we have

∥ (q − (n+ 1)− ε)Tf(r) ⩽
q∑

j=1

d−1
j Nα

f (r,Dj) +Of(r).

Let D = {D1, . . . , Dq} be a collection of q hypersurfaces in general position.

We denote the degree of Dj by dj for j = 1, . . . , q and let d be the least common

multiple of the dj. Set δD := min{d1, . . . , dq} and M = (d(n+1)22n+1+1)n. The

following two theorems are the uniqueness theorem forms for holomorphic curves

on Fujimoto-type annulus.

Theorem 3.5. Let f and g be algebraically non-degenerate holomorphic curves

from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let D =

{D1, . . . , Dq} be a collection of q > n + 1 + 2Mn/δD hypersurfaces in general

position Pn(C) such that f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D). Then f ≡ g.

Theorem 3.6. Let f and g be algebraically non-degenerate holomorphic curves

from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let D =

{D1, . . . , Dq} be a collection of q > n + 1 + 2M/δD hypersurfaces in general

position in Pn(C) such that

(a) f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D),

(b) Ef(Di)∩Ef(Dj) = ∅ and Eg(Di)∩Eg(Dj) = ∅ for all i ̸= j ∈ {1, . . . , q}.
Then f ≡ g.
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CONCLUSION

In this thesis, we have studied some forms of the Fundamental Theorem with

reduced counting functions or truncated multiple counting functions for holomor-

phic curves on images in the field W and the uniqueness problem for holomorphic

curves on an annulus in the complex plane C.

The main results of the thesis include:

1. Proving two forms of the Second Main Theorem for holomorphic curves on

the non-Archimedean field with the reduced counting function in two cases where

the targets are hyperplanes in general position (Theorem 1.7) and in subgeneral

position (Theorem 2.4).

2. Construction of a form of the Second Main Theorem for holomorphic

curves on the complex field C in the case of holomorphic curves on an algebraically

non-degenerate annulus with a truncated multiple count function combined with

hypersurfaces in general position (Theorem 2.13).

3. Give three new theorems on the uniqueness problem of holomorphic curves

on an annulus with the target being hypersurfaces in general positions (theo-

rems 3.2, 3.5, 3.6).

We propose some future research directions:

1. Study some Second Main Theorems for holomorphic curves with reduction

in different cases of the target.

2. Use the results of the forms of the Second Main Theorem with reduction

to study a problem uniqueness to holomorphic curves.
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