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INTRODUCTION

1. History and reasons for choosing the topic

Originated by the research results of R.Nevanlinna from the beginning of the

XX century. Value distribution theory for meromorphic functions (also called

Nevanlinna Theory) is regarded as one of the profound and beautiful achieve-

ments of Mathematics. The main content include two fundamental theorems:

First Main Theorem and Second Main Theorem, Value distribution theory, in-

creasingly attracting the attention of many domestic and foreign authors, ob-

tained many important results and have applications in many different fields of

Mathematics such as the uniqueness problem for meromorphic functions, com-

plex dynamic systems, complex differential equations,....

Let Pn(C) be the complex projective space of complex dimension n over C.

In 1933, H. Cartan extended the Nevanlinna’s second main theorem to the case

for holomorphic curves sharing hyperplanes in general position into complex

projective spaces and give some application. In this direction of research, many

domestic and foreign mathematicians have published many outstanding results

about the forms of The First Main Theorem and Second Main Theorem in

different cases and to study the application of these theorems in different areas

of Mathematics. Specially is the uniqueness problem for holomorphic curves.

Let f : C→Pn(C) be a holomorphic map where (f0, . . . , fn) be a reduced

representative of f . The function

Tf(r) =
1

2π

∫ 2π

0
log ∥f(reiθ)∥dθ

is called the Nevanlinna-Cartan characteristic function of f , where ∥f(z)∥ =

max{|f0(z)|, . . . , |fn(z)|}.
Let H be a hyperplane in Pn(C) and let L be a linear form defined in H. The
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function

mf(r,H) = mf(r, L) :=
1

2π

∫ 2π

0
log

∥f(reiθ)∥
|L(f)(reiθ)|

dθ

is called the proximity function of f with respect to H. Let nf(r,H) be the

number of zeros of L(f)(z) in the disk {|z| < r}, counting multiplicity, and

nM
f (r,H) be the number of zeros of L(f)(z) in the disk {|z| < r}, multiple

truncated by a positive integer M . The function

Nf(r,H) = Nf(r, L) =

∫ r

0

nf(t,H)− nf(0, H)

t
dt+ nf(0, H) log r

is called the counting function and the function

NM
f (r,H) = NM

f (r, L) =

∫ r

0

nM
f (t,H)− nM

f (0, H)

t
dt+ nM

f (0, H) log r

is called the truncated counting function by M of f with respect to H, where

nf(0, H) = lim
r→ 0

nf(r,H), nM
f (0, H) = lim

r→ 0
nM
f (r,H). Number M denote by

NM
f (r,H) is called the multiplicity truncated.

In 1933, H. Cartan proved the following:

Theorem 1. Let H be a hyperplane in Pn(C) and let f : C→Pn(C) be a

holomorphic curve whose image is not contained in H. We have

Tf(r) = Nf(r,H) +mf(r,H) +O(1).

Theorem 2. Let f : C→Pn(C)be a linearly non-degenerate holomorphic curve

and let H1, . . . , Hq be hyperplanes in Pn(C) in the general position, Thus, we get

(q − n− 1)Tf(r) ⩽
q∑

j=1

Nn
f (r,Hj) + o(Tf(r))

holds for r > 0 outside a set of finite Lebesgue measure

Theorem 1 is the first main theorem, and Theorem 2 is the second main

theorem with truncated multiplicities for linearly non-degenerate holomorphic

curves from C to Pn(C) intersecting a collection of fixed hyperplanes in general

position. The results of this study by H. Cartan is considered very important,

it opens a new research direction in developing the Value distribution theory -

study the distribution of values meromorphic maps, holomorphic maps - which

we know today by the name associated with two outstanding mathematicians
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“Nevanlinna-Cartan Theory”. Recent research results in this direction is

focus on two issues:

1. Construct the fundamental theorems (the first main theorem and the

second main theorem) for holomorphic curves form C or a domain in C to Pn(C)

or a algebraic variety map in Pn(C) with the target of the hyperplanes, fixed

hypersurfaces or moving by establishing a relationship between the Nevanlinna-

Cartan characteristic with the proximity functions, the counting functions or the

truncated counting functions. From which to infer results about defect relation.

2. Research the applications of Nevanlinna-Cartan theory in different areas of

mathematics, such as research degeneracy of algebraic curves, uniqueness prob-

lem for meromorphic function and holomorphic curves, system of differential

equations, complex partial derivatives,....

The first research direction has attracted the attention of many mathemati-

cians and obtained many profound results, such as G. Dethloff, E. I. Nochka, M.

Ru, P. Vojta, H. H. Khoai, D. D. Thai, T. V. Tan, T. T. H. An, S. D. Quang . . . .

In 1983, Nochka extended the results of H. Cartan in the case of hyperplanes

in the N−subgeneral position in Pn(C). In 2004, M. Ru established the second

main theorem for holomorphic curves with target in the form of hypersurfaces

in the general position in (C) without ramification. In 2009, he extended that

result for holomorphic curves to a projective algebraic manifold V . In 2007, T.

T. H. An and H. T. Phuong and in 2008, Q. M. Yan and Z. H. Chen proved

a relationship between the characteristic function Tf(r) of holomorphic curves

f : C→Pn(C) with truncated counting functions NM
f (r,Dj) in the case en-

countering hypersurfaces in general position in projective space. In addition, in

recent years, G. Dethloff, T. V. Tan, D. D. Thai, S. D. Quang, L. Shi, P. C.

Hu, N. V. Thin . . .many results have been published concerning the holomor-

phic curve of one or more complex variables to Pn(C) or a projective algebraic

manifold in Pn(C) with target of hyperplanes or hypersurfaces, fied or moving,

in in general position or N−subgeneral position.

One of the important applications of the Nevanlinna-Cartan Theory as well as
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the Nevanlinna Theory is to study about the determination of holomorphic maps

as well as meromorphic function through the inverse image of one or more finite

element sets. This problem also attracted the interest of many mathematicians:

A. Boutabaa, W. Cherry, G. Dethloff, H. Fujimoto, M. Ru, L. Smiley, C. C.

Yang, H. H. Khoai, D. D. Thai, T. V. Tan, S. D. Quang, H. T. Phuong and

many other authors.

Let f : U →Pn(C) be a holomorphic map, and (f0, . . . , fn) be a reduced

representative of f , where U be a complex plane C or a domain in C. A collection

of hypersurfaces D = {D1, . . . , Dq}, with any Dj ∈ D, we denote

Ef(Dj) = {z ∈ U | Qj ◦ f(z) = 0 ignoring multiplicity};

Ef(Dj) = {(z,m) ∈ U × N | Qj ◦ f(z) = 0 and ordQ◦f(z) = m}.

and set

Ef(D) =
⋃

Dj∈D
Ef(Dj) and Ef(D) =

⋃
Dj∈D

Ef(Dj).

Let F be a family of holomorphic maps form U to Pn(C). A collection hypersur-

faces D is said to be unique range set ignoring multiplicity, denoted by URSIM

(or unique range set counting multiplicity, denoted by URSCM) for a family of

holomorphic maps F if for any pair of holomorphic maps f, g ∈ F , the condition

Ef(D) = Eg(D) (resp. Ef(D) = Eg(D) ) implies f ≡ g. The URSIM, URSCM

are called the unique range set for a family of holomorphic maps F to the same.

In 1975, H. Fujimoto proved a result about uniqueness problem for meromor-

phic maps to complex projective space, shows that there exist unique range set

counting multiplicity with 3n + 2 hyperplanes in general position which deter-

mines a meromorphic maps. This result is considered as the opening for re-

search on the uniqueness problem for meromorphic maps. Since that time, this

proble has been studied intensively and many mathematicians expanded the

Fujimoto’s result. Following this result, in 1983, L. Smiley introduced a new

result on uniqueness problem for linearly non-degenerate meromorphic maps by

the inverse image of a finite family of hyperplanes, this problem was studied

by H. Fujimoto again in 1998. In 2006, Dethloff and Tan considered the same
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problem for the moving hyperplanes. And many more results about uniqueness

problem for holomorphic curves in the case of multiple variables published by

M. Ru, D. D. Thai, T. V. Tan, D. Quang . . . . Note that, most proofs of the

results about unique range sets are based on forms of the Second Main Theorem

with truncated multiplicity.

For the uniqueness problem for meromorphic function, In 1926, R. Nevanlinna

proved: two nonconstant complex meromorphic function f, g satisfy f−1(ai) =

g−1(ai), i = 1, . . . , 5, then f ≡ g. This result of Nevanlinna shows that two

meromorphic functions are uniquely determined by the inverse image of five

distinct points. Following Nevanlinna’s result. There are many published works

of domestic and foreign authors, focusing on the following directions: meromor-

phic functions share a element, counting multiplicities and ignoring multiplicity.

Let f be a meromorphic function, denote

σ2(f) = lim inf
r→∞

log log T (r, f)

log r
.

Let f, g be two nonconstant meromorphic functions on complex plane and

a ∈ C. We say that f and g share the value a CM (counting multiplicities) if

f − a and g − a have the same zeros, f and g share the value a CM if f − a

and g−a have the same zeros counting multiplicities. In 1996, Brück posed the

following conjecture which we later used to call the Brück conjecture: Let f be a

nonconstant entire function such that the hyper-order σ2(f) of f is not positive

integer or ∞. If f and f ′ share a finite value a− CM, then
f ′ − a

f − a
= c, where c is

a nonzero constant. Note that, The conjecture in the case a = 0 has been proved

by Brück. In 1998, Gundersen and Yang verified that the Conjecture is true

when f is of finite order (not an integer). In the case of f, a function of order with

σ2(f) <
1
2 has been proved by Chen và Shon. However, the conjecture in the

case σ2(f) ≥ 1
2 is still open. It is intersting to ask what happens if f is replace by

fn, and f is replace by a differential polynomial or a is replace by a polynomial

or a function. In 2008, L. Z. Yang and J. L. Zhang found out a result relating

to Brück’s conjecture as following: Letf be a nonconstant entire function, n ⩾ 7

be an interger, and F = fn. If F and F ′ share 1 CM , then F ≡ F ′ and f
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assumes the form f = cez/n, where c is a nonzero constant. In 2008, Li and

Cao extension of Brück conjecture when replacing the constant a by a suitable

polynomial and replace the first derivative f ′ by higher order derivatives. These

results create a new research direction, often called A uniqueness problem for

entire functions related to Brück conjecture.

Thus, the further development of Nevanlinna-Cartan theory, especially study

the form of truncated Second Main Theorem is really necessary. It will give

us important basis for studying the uniqueness problem for meromorphic func-

tion and holomorphic maps. Currently, the problem of developing Nevanlinna-

Cartan theory and research on the application of this theory as well as Nevan-

linna theory in different sciences has been strongly interested, associated with

the works of many domestic and foreign mathematicians: A. Boutabaa, H. Car-

tan, W. Cherry, G. Dethloff, Ph. Griffiths, M. Ru, P. Vojta, P. M. Wong, H.

H. Khoai, D. D. Thai, T. T. H. An, S. D. Quang, H. T. Phuong, V. H. An and

many other authors.

Choosing the topic ”On the Nevanlinna theory for annuli and unique-

ness problem” of author of this thesis also aims to continue to develop more

interesting things of the Nevanlinna - Cartan Theory for holomorphic curves on

annuli and uniqueness problem.

2. Purpose and research object

• research object

In this thesis, we focus on studying the properties of meromorphic functions

on the complex plane C and holomorphic curves on the annuli. These are

also the basic research objects of Nevanlinna and Nevanlinna-Cartan theory.

• Purpose:

The first direction of research: construct some form fundamental theorem

( First Main Theorem and Second Main Theorem) for holomorphic curve on

the annuli with target hypersurfaces by setting relate between Nevanlinna-

Cartan characteristic function with proximity function, counting function
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or truncated counting function.

The second direction of research: setting some sufficient condition for two

holomorphic curves on annuli sharing sufficiently many hypersurfaces in

general position for Veronese embedding.

The third direction of research: construct some new results about unique-

ness problem for meromorphic functions related to Brück conjecture in the

case replace f by F and replace f ′ by M [f ].

3. Overview of the thesis

Throughout this thesis we denote R > 1 be a fixed positive real number or

∞ and

∆ = {z ∈ C :
1

R
< |z| < R}

be a annulus in C .

One of the research directions in Nevanlinna and Nevanlinna-Cartan theory

is to consider first main theorem and second main theorem for the mapping case

from f : ∆→Pn(C). In the direction of this research, R. Korhonen, A. Khrys-

tiyanyn and A. Kondratyuk have published the first publications about Value

distribution for meromorphic functions on anuli. This problem immediately at-

tracted the attention of authors around the world such as H. Cao, S. Liu, N. Lu,

M. E. Lund, D. Meng and obtained some important results. For holomorphic

curves on anuli, recently, in 2005, H. T. Phuong and N. V. Thin published some

fundamental theorems for holomorphic curves on the annuli with target being

fixed hyperplanes. The results that we achieve in this thesis about distribution

of values for holomorphic curves on the annuli are the first main theorem and

the second main theorem with target hypersurfaces. The specific results are as

follows:

Theorem 1.2.3. Let D be a hypersurface in Pn(C) of degree d and f = (f0 :

· · · : fn) : ∆→Pn(C) be a holomorphic curve whose image is not contained D.

Then, we have for any 1 < r < R :

mf(r,D) +Nf(r,D) = dTf(r) +O(1).
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Theorem 1.3.6. Let f : ∆→Pn(C) be an algebraically non-degenerate holo-

morphic curve, and let Dj, 1 ≤ j ≤ q, be hypersurfaces in Pn(C) of degree dj

in general position. Let d be the least common multiple of the d1, d2, . . . , dq. Let

0 < ε < 1 and

α ≥ (d[(n+ 1)22n])ε−1] + 1)n,

Then for any 1 < r < R, we have

|| (q − (n+ 1)− ε)Tf(r) ⩽
q∑

j=1

d−1
j Nα

f (r,Dj) +Of(r)

where

Of(r) =

O(log r + log Tf(r)) nu R = +∞

O(log
1

R− r
+ log Tf(r)) nu R < +∞.

Theorem 1.2.3 is a form of first main theorem for holomorphic functions on

annuli. Theorem 1.3.6 is a form of truncated second main theorem for holomor-

phic functions on annuli from ∆ to Pn(C) share hypersurfaces in general position

in Pn(C), show a relate between the characteristic function Tf(r) of holomorphic

curves f : ∆→Pn(C) with the truncated counting functions NM
f (r,Dj).

For on uniqueness problem for holomorphic functions on annuli, in 2003, H.

T. Phuong and T. H. Minh proved some results about uniqueness problem for

holomorphic functions on annuli sharing fixed hyperplanes, năm 2021, H. H.

Giang Giang published some results in this direction with the target of hyper-

planes.... The results that we have obtained in this direction of research are as

follows:

Theorem 2.2.1. Let f and g be algebraically non-degenerate holomorphic

curves from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)).

Let D = {D1, . . . , Dq} be a collection of q > nD + 1+ 2n2
D/mD hypersurfaces in

general position for Veronese embedding in Pn(C) such that f(z) = g(z) for all

z ∈ Ef(D) ∪ Eg(D). Then f ≡ g.

Theorem 2.2.2. Let f and g be algebraically non-degenerate holomorphic

curves from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)).

Let D = {D1, . . . , Dq} be a collection of q > nD + 1+ 2nD/mD hypersurfaces in

general position for Veronese embedding in Pn(C) such that



9

(a) f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D),

(b) Ef(Di)∩Ef(Dj) = ∅ and Eg(Di)∩Eg(Dj) = ∅ for all i ̸= j ∈ {1, . . . , q}.
Then f ≡ g.

Theorem 2.2.1 and Theorem 2.2.2 are two algebraically conditions to uniquely

identify holomorphic curve on annulus sharing sufficiently many hypersurfaces

in general position for Veronese embedding.

Let f and g be two nonconstant meromorphic functions. Let a and b be two

complex numbers. If g − b = 0 whenever f − a = 0, we write f = a ⇒ g = b.

If f = a ⇒ g = b and g = b ⇒ f = a, we write f = a ⇔ g = b. If f − a

and g− b have the same zeros and poles (counting multiplicity), then we denote

f − a ⇌ g − b. Base on the third direction of research concerning uniqueness

problem for entire functions related to the Brück conjecture, we obtained the

following result in 2018:

Theorem 3.2.4 Let n ∈ N and k, ni, ti ∈ N∗, i = 1, . . . , k satisfy one of the

following conditions:

1) k = 1, n = 0, n1 ⩾ t1 + 1;

2) n ⩾ 1 or k ⩾ 2, nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 2.

Let a and b be two

nite nonzero values and f be a nonconstant entire function. If fn+n1+···+nk =

a ⇌ fn(fn1)(t1) . . . (fnk)(tk) = b then

fn(fn1)(t1) . . . (fnk)(tk) − b

fn+n1+···+nk − a
= c,

where c is a nonzero constant. Specially, if a = b then f = c1e
tz, where c1 and

t are nonzero constants and t is satisfied by (tn1)
t1 . . . (tnk)

tk = 1.

In order to prove Theorem 3.2.4, we need to use the following result about

normal family of meromorphic functions.

Theorem 3.2.3. Let F be a family of meromorphic functions in a complex

domain D. Let a and bbe two complex numbers such that b ̸= 0, let n ∈ N,
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k ∈ N∗ and nj, tj, j = 1, 2, . . . , k satisfy

nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 3, (1)

and fn+n1+···+nk = a ⇔ fn(fn1)(t1) . . . (fnk)(tk) = b for all f ∈ F . Then F is a

normal family. Furthermore, if F is a family of holomorphic functions, then

the statement holds when (1) is replaced by one of the following conditions:

k = 1, n = 0, n1 ⩾ t1 + 1;

n ⩾ 1 or k ⩾ 2, nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 2.

For the proof technique we mainly use Theorem 3.2.4 combine it with normal

family theory and the Nevanlinna theory.

4. Research Methods of the thesis

In this thesis, we use basic research methods: on the basis of a research-

oriented literature review, we discover open problems that need to be solved and

use our knowledge, techniques of complex analysis, Nevanlinna and Nevanlinna-

Cartan value distribution theory, algebra geometry, normal family theory to

suggest suitable methods or use some technique to solve the problems posed.

In addition to publication in journals, The main results of the thesis have been

reported at:

• Seminar of the Department of Calculus, Faculty of Mathematics, University

of Education, Thai Nguyen University every year.

• International Conference on Algebra - Number Theory - Geometry - Topol-

ogy 2021, 21 - 23 October 2021 at University of Education, Thai Nguyen

University.
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CHAPTER 1

TWO FUNDAMENTAL THEORY FOR
HOLOMORPHIC CURVES ON THE
ANNULI

1.1. Some basic knowledge in the value distribution theory for mero-

morphic functions

Let f be a meromorphic function on complex plane C. The function

m(r, f) =
1

2π

∫ 2π

0
log+

∣∣f(reiφ)∣∣ dφ
is called the proximity function of f . Let n(r, f) be the number of poles of f in

Dr = {z ∈ C : |z| ⩽ r}. The function

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r

is called the truncated counting function of f. The function T (r, f) = m(r, f) +

N(r, f) is called the characteristic function of f .

Theorem 1.1.1 (The first main theorem). Let f be a nonconstant meromorphic

function on C and a be a complex number. Then

T (r,
1

f − a
) = T (r, f) +O(1).

Theorem 1.1.2 (The second main theorem). Let f be a nonconstant meromor-

phic function on C. Let a1, . . . , aq be q any distinct points in C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
) + S(r, f)

hols for r ∈ [1,∞) outside a set of finite Lebesgue measure, where S(r, f) =

o(T (r, f)) when r → ∞.
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Let R > 1 be a fixed positive real number or +∞, set:

∆ =
{
z ∈ C :

1

R
< |z| < R

}
,

be a annulus in C, and for any real number r, such that 1 < r < R, we denote:

∆r = {z ∈ C :
1

r
< |z| < r} = ∆1,r ∪∆2,r.

Let f(z) be a meromorphic function on ∆ and z0 is a point of ∆. If f(z) be the

number of zeros having multiplicity α at z0 then we denote νf(z0) = α. If f(z)

be the number of poles having multiplicity α at z0 then we denote νf,∞(z0) = α.

In the case f(z0) ̸= 0,∞, we denote νf(z0) = 0 and νf,∞(z0) = 0. Let f be a

meromorphic function on ∆, namely f holomorphic on ∆ outside some abnormal

point of poles, we recall

m(r, f) = m(r,∞) =
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

where a ∈ C and r ∈ (R−1, R) and log+ x = max{0, log x} with real numbers

x > 0. With some real numbers r ∈ {1 < r < R} , we denote m0(r, f) =

m(r, f) + m(r−1, f). The function m0(r, f) is called the proximity function or

the compensation function of f at a ∈ C and at∞. Let n1(r, f) be the number of

poles counting multiplicity of f in ∆1,r, n2(r, f) be the number of poles counting

multiplicity of f in ∆2,r, namely

n1(r, f) =
∑

z∈∆1,r

νf,∞(z), n2(r, f) =
∑

z∈∆2,r

νf,∞(z).

We set

N1(r, f) =

∫ 1

1/r

n1(t, f)

t
dt; N2(r, f) =

∫ r

1

n2(t, f)

t
dt.

The counting function at poles counting multiplicity of f is defined byN0(r, f) =

N1(r, f)+N2(r, f). The characteristic function T0(r, f) of f is defined by T0(r, f) =

m0(r, f)− 2m(1, f) +N0(r, f). The proximity functions, the counting functions

and The characteristic functions are called Nevanlinna functions of meromorphic

function on anuli.

The following lemmas is often referred to as the first main theorem and the

Second Main Theorem for meromorphic functions on annuli:
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Lemma 1.1.3. Let f be a meromorphic function on ∆. Then for any r ∈ (1, R),

we have

T0(r,
1

f − c
) = T0(r, f) +O(1)

holds for every fixed c ∈ C.

Lemma 1.1.4. Let f be a meromorphic function on ∆, a1, a2, . . . , ap be distinct

finite complex numbers and λ ⩾ 0. Then

m0(r, f) +

p∑
ν=1

m0

(
r,

1

f − aν

)
⩽ 2T0(r, f)−N

(1)
0 (r, f) + S(r, f)

where

N
(1)
0 (r, f) = N0(r, 1/f

′) + 2N0(r, f)−N0(r, f
′)

and

i) in the case R = ∞ then S(r, f) = O(log(rT0(r, f))) for r ∈ (1, R), except

for the set ∆r such that
∫
∆r

rλ−1dr < +∞;

ii) if R < +∞ then S(r, f) = O

(
log

(
T0(r, f)

R− r

))
for r ∈ (1, R), except for

the set ∆
′

r such that
∫
∆′

r

dr)

(R− r)λ−1
< +∞.

1.2. Nevanlinna-Cartan functions and the first main theorem

Definition 1.2.1. Let a holomorphic map form ∆ to Pn(C), or also called

holomorphic curves, in projective space Pn(C) is defined as a mapping

f = (f0 : · · · : fn) :∆ −→ Pn(C)

z 7−→ (f0(z) : · · · : fn(z)),

where fj, 0 ⩽ j ⩽ n be a entire functions on ∆. If fj, j = 0, 1, . . . , n, be

polynomials then f is called algebraic curves . In the case f0, . . . , fn without

common zeros on ∆ then (f0, f1, . . . , fn) is called the reduced representation of

f .

Definition 1.2.2. The holomorphic curves f : ∆ −→ Pn(C) is called linearly

degenerate if the image of f is contained in some real linear manifold of projective



14

space Pn(C). The holomorphic curves f is called algebracally degenerate if the

image of f is contained in some real algebraic manifold of Pn(C).

Let f = (f0 : · · · : fn) : ∆→Pn(C) be a holomorphic map where f0, . . . , fn are

entire functions and without common zeros in ∆. For 1 < r < R, characteristic

functionTf(r) of f is defined by:

Tf(r) =
1

2π

∫ 2π

0
log ∥f(reiθ)∥dθ + 1

2π

∫ 2π

0
log ∥f(r−1eiθ)∥dθ,

where ∥f(z)∥ = max{|f0(z)|, . . . , |fn(z)|}. The above definition is independent,

up to an additive constant, of the choice of the reduced representation of f .

Let D be a hypersurface in Pn(C) of degree d, and let Q. be the homogeneous

polynomial of degree d defining D. The proximity function of f is defined by:

mf(r,D) =
1

2π

∫ 2π

0
log

∥f(reiθ)∥d

|Q ◦ f(reiθ)|
dθ +

1

2π

∫ 2π

0
log

∥f(r−1eiθ)∥d

|Q ◦ f(r−1eiθ)|
dθ.

Let M be a positive integer. Let n1,f(r,D) be the number of zeros of Q(f) in

∆1,r counting multiplicity, n2,f(r,D) being the number of zeros of Q(f) in ∆2,r

counting multiplicity, nM
1,f(r,D) be the number of zeros of Q(f) in ∆1,r, where

any zero of multiplicity greater than M is “truncated” and counted as if it only

had multiplicity M and nM
2,f(r,D) being the number of zeros of Q(f) in ∆2,r,

where any zero of multiplicity greater than M is “truncated” and counted as if

it only had multiplicity M . We have:

n1,f(r,D) = n1(r, 1/Q(f)), n2,f(r,D) = n2(r, 1/Q(f));

nM
1,f(r,D) = nM

1 (r, 1/Q(f)), nM
2,f(r,D) = nM

2 (r, 1/Q(f)).

We denote:

N1,f(r,D) =

∫ 1

r−1

n1,f(t,D)

t
dt, N2,f(r,D) =

∫ r

1

n2,f(t,D)

t
dt,

NM
1,f(r,D) =

∫ 1

r−1

nM
1,f(t,D)

t
dt, NM

2,f(r,D) =

∫ r

1

nM
2,f(t,D)

t
dt.

The integrated counting and truncated functions are defined by:

Nf(r,D) = Nf(r,Q) := N1,f(r,D) +N2,f(r,D),

NM
f (r,D) = NM

f (r,Q) := NM
1,f(r,D) +NM

2,f(r,D).
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Let D1, . . . , Dq be hypersurfaces in Pn(C) and Qj, 1 ⩽ j ⩽ q, be homogeneous

polynomials in C[z0, . . . , zn] defining dj. We recall that hypersurfaces D1, . . . , Dq

are said to be in general position if q > n and for any distinct i1, . . . , in+1 ∈
{1, . . . , q}. We have {z ∈ Pn(C) : Qi1(z) = Qi2(z) = · · · = Qin+1

(z) = 0} = ∅.
In 2022, we proved the following theorems

Theorem 1.2.3. Let D be a hypersurface in Pn(C) of degree d and f = (f0 :

· · · : fn) : ∆→Pn(C) be a holomorphic curve whose image is not contained D.

Then, we have for any 1 < r < R :

mf(r,D) +Nf(r,D) = dTf(r) +O(1).

Theorem 1.2.3 gives us an equality related between the characteristic function

of an holomorphic curve on an annuli with proximity functions and counting

functions combined with hypersurface. This result is similar to the case of

holomorphic curves on the complex plane C .

1.3. The second main theorem

We have proved the following theorem in 2022 is the second main theorem

for holomorphic curves from ∆ to Pn(C) intersecting a collection of fixed hyper-

surfaces in general position with truncated counting functions.

Theorem 1.3.1. Let f : ∆→Pn(C) be an algebraically non-degenerate holo-

morphic curve, and let Dj, 1 ≤ j ≤ q, be hypersurfaces in Pn(C) of degree dj

in general position. Let d be the least common multiple of the d1, d2, . . . , dq. Let

0 < ε < 1 and

α ≥ (d[(n+ 1)22n])ε−1] + 1)n,

Then for any 1 < r < R, we have

|| (q − (n+ 1)− ε)Tf(r) ⩽
q∑

j=1

d−1
j Nα

f (r,Dj) +Of(r)

where

Of(r) =

O(log r + log Tf(r)) nu R = +∞

O(log
1

R− r
+ log Tf(r)) nu R < +∞.
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CHAPTER 2

THE UNIQUENESS PROBLEM FOR
HOLOMORPHIC CURVES ON ANNULI

2.1. Some preliminaries

In this section, we recall the first main theorem and second main theorems

proved by H. T. Phuong and N. V. Thin in 2015, which are necessary for proofs

of our results.

Lemma 2.1.1. Let H be a hyperplane in Pn(C) and f : ∆→Pn(C) be a holomor-

phic curve whose image is not contained H. Then we have for any 1 < r < R,

Tf(r) = mf(r,H) +Nf(r,H) +O(1),

where O(1) is a constant independent of r.

Lemma 2.1.2. Let f : ∆→Pn(C) be a linearly non-degenerate holomorphic

curve and H1, . . . , Hq be hyperplanes in Pn(C) in general position. Then we

have

|| (q − n− 1)Tf(r) ⩽
q∑

j=1

Nn
f (r,Hj) +Of(r),

where

Of(r) =

O(log r + log Tf(r)) nu R0 = +∞

O(log
1

R0 − r
+ log Tf(r)) nu R0 < +∞.

2.2. Two fundamental theorems for holomorphic curves

Let D be a hypersurface of degree d in Pn(C), which is defined by a homoge-

neous polynomial Q of degree d. Then
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Q(z0, . . . , zn) =
nd∑
k=0

akz
ik0
0 . . . ziknn ,

where nd =
(
n+d
n

)
−1 and ik0+ · · ·+ ikn = d, ak ∈ C vi k = 1, . . . , nd. We denote

by a = (a0, . . . , and
) the vector associated with D (or with Q).

Let D = {D1, . . . , Dq} be a collection of arbitrary hypersurfaces and Dj

be the homogeneous polynomial in C[z0, . . . , zn] of degree dj defining Dj for

j = 1, . . . , q. Let mD s the least common multiple of the dj for j = 1, . . . , q and

denote

nD =

(
n+mD

n

)
− 1.

We set Q∗
j = Q

mD/dj
j and let a∗j be the vector associated with Q∗

j for j = 1, . . . , q.

The collection D is said to be in general position for Veronese embedding if

q > nD and for any distinct i1, . . . , inD+1 ∈ {1, . . . , q} the vectors a∗i1, . . . , a
∗
inD+1

are linearly independent.

Let f : ∆→Pn(C) be a holomorphic curve, let D be a hypersurface in Pn(C)

of degree d and Q be the homogeneous polynomial of degree d in n+1 variables

with coefficients in C defining D, we define

Ef(D) := {z ∈ ∆ | Q ◦ f(z) = 0 ignoring multiplicity};

Ef(D) := {(z,m) ∈ ∆× N | Q ◦ f(z) = 0 and νQ(f)(z) = m ⩾ 1}.

Let D = {D1, . . . , Dq} in Pn(C) be a collection of hypersurfaces, we define

Ef(D) :=
⋃

Dj∈D
Ef(Dj) and Ef(D) :=

⋃
Dj∈D

Ef(Dj).

With the above concepts and notations, in 2021 we have proved a uniqueness

theorem for meromorphic curves on an annuli sharing hypersurfaces as follows:

Theorem 2.2.1. Let f and g be algebraically non-degenerate holomorphic curves

from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let

D = {D1, . . . , Dq} be a collection of q > nD + 1 + 2n2
D/mD hypersurfaces in

general position for Veronese embedding in Pn(C) such that f(z) = g(z) for all

z ∈ Ef(D) ∪ Eg(D). Then f ≡ g.
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Theorem 2.2.2. Let f and g be algebraically non-degenerate holomorphic curves

from ∆ into Pn(C) such that Of(r) = o(Tf(r)) and Og(r) = o(Tg(r)). Let

D = {D1, . . . , Dq} be a collection of q > nD + 1 + 2nD/mD hypersurfaces in

general position for Veronese embedding in Pn(C) such that

(a) f(z) = g(z) for all z ∈ Ef(D) ∪ Eg(D),

(b) Ef(Di)∩Ef(Dj) = ∅ and Eg(Di)∩Eg(Dj) = ∅ for all i ̸= j ∈ {1, . . . , q}.
Then f ≡ g.

Some remark. 1. In theorem 2.2.2, the minimum number of hypersurfaces

satisfying the hypothesis is

nD + 1 + 2nD/mD.

Note that if hypersurfaces in general position for Veronese embedding in Pn(C).

In this case nD = n and mD = 1 then q = 3n + 2, coincides with the required

hyperplane number in Fujimoto’s result.

2. We know that, holomorphic function h is said to be transcendental function

if lim sup
r→∞

T0(r, h)

log r
= ∞ in the case R = ∞ and lim sup

r→R

T0(r, h)

− log(R− r)
= ∞

in the case R < ∞. So for holomorphic curve f with reduced representative

f = (f0 : · · · : fn), if one of fj, is transcendental function then Of(r) = o(Tf(r)).
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CHAPTER 3

A UNIQUENESS PROBLEM FOR ENTIRE
FUNCTIONS RELATED TO BRÜCK’S
CONJECTURE

3.1. Preliminaries

Let a nonconstant meromorphic function g(z) in the complex plane C, and

its first p derivatives. A dierential polynomial P of g is de

ned by

P (z) :=
n∑

i=1

αi(z)

p∏
j=0

(g(j)(z))Sij ,

where Sij, 0 ⩽ i, j ⩽ n, are nonnegative integers, and αi(z), 1 ⩽ i ⩽ n are small

meromorphic functions with respect to g. Set

d(P ) := min
1⩽i⩽n

p∑
j=0

Sij và θ(P ) := max
1⩽i⩽n

p∑
j=0

jSij.

In 2002, J. Hinchliffe proved the following result, for evaluation between the

Nevanlinna functions with the meromorphic functions and the counting func-

tions with the differential polynomials.

Lemma 3.1.1. Let g be a transcendental meromorphic function and a ̸= 0 be

a nonzero complex constant, let P be a nonconstant dierential polynomial in g

with d(P ) ⩾ 2. Then

T (r, g) ⩽
θ(P ) + 1

d(P )− 1
N(r,

1

g
) +

1

d(P )− 1
N(r,

1

P − a
) + o(T (r, g)),

for all r ∈ [1,+∞) excluding a set of finite Lebesgues measure. When f is a
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transcendental entire function, the above inequality becomes

T (r, g) ⩽
θ(P ) + 1

d(P )
N(r,

1

g
) +

1

d(P )
N(r,

1

P − a
) + o(T (r, g)),

for all r ∈ [1,+∞) excluding a set of finite Lebesgues measure.

Let f a meromorphic function in the complex plane C, we recall the order

σ(f) of meromorphic function f is defined by

σ(f) = lim sup
r→∞

log T (r, f)

log r
.

and the order of f is defined by

σ2(f) = lim sup
r→∞

log log T (r, f)

log r
.

Special case, if f be an entire function, we know that f ca be expressed by

the power series

f(z) =
∞∑
n=0

anz
n,

then we denote by

µ(r, f) = max
n∈N,|z|=r

{|anzn|},

ν(r, f) = sup{n : |an|rn = µ(r, f)},

M(r, f) = max
|z|=r

|f(z)|.

In this case, the order of f can be expressed in the form

σ(f) = lim sup
r→∞

log log(M(r, f))

log r
.

Lemma 3.1.2. Let f is an entire function with the order σ(f), then

σ(f) = lim sup
r→∞

log ν(r, f)

log r
.

Lemma 3.1.3. Let f be a transcendental entire function, δ be a real number,

satisfy 0 < δ <
1

4
. Let z be a complex number, satisfy |z| = r and

|f(z)| > M(r, f)ν(r, f)
−
1

4
+δ
.

Then there exists a set F ⊂ R+ of finite logarithmic measure, that is
∫
F

dt
t < +∞,

such that
f (m)(z)

f(z)
=

(
ν(r, f)

z

)m

(1 + o(1))
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holds for all m ⩾ 1 and r ̸∈ F.

Taking E0(z) = 1− z, Em(z) = (1− z)ez+z2/2+···+zm/m,m ∈ Z+, then we have

a following result called the Weierstrass Factorization Theorem.

Lemma 3.1.4. Let f be an entire function, with a zero multiplicity m ⩾ 0. at

z = 0. Let the other zeros of f be at a1, a2, . . . , each zero being repeated as many

times as its multiplicity implies. Then f has the representation

f(z) = eg(z)zm
∞∏
n=1

Emn

( z
an

)
,

for some entire function g and some integers mn. Furthermore, if f has finite

order ρ, then g is a polynomial with degree at most ρ.

Let S be a the Riemann sphere and π : Ĉ = C∪{∞}→S be a spherical

projection. Let z1, z2 ∈ Ĉ, denote M1 = π(z1) and M2 = π(z2) be the two

points in S corresponding to z1, z2 respectively. The length of the line segment

M1M2 is called the spherical distance between two points z1, z2 and denote by

ρS(z1, z2).

Definition 3.1.5. Let S = {fn(z), n = 1, 2, . . . } be a sequence of meromorphic

functions in a domain D. Let E be a set of points of D. The sequence S is

said to be uniformly convergent in E with respect to the spherical distance, if

to each positive number ε corresponds a positive integer N such that, when

n ≥ N,m ≥ N ,we have ρS(fn(z), fm(z)) < ε in z ∈ E.

Definition 3.1.6. Cho D ⊂ C là mt min và F là mt h các hàm phân h̀ınh trên

D. H F c gi là h chun tc trên D nu mi dãy {fn} ⊂ F luôn tn ti mt dãy con ca

{fn} hi t cu u trên mi tp con compact ca D.

3.2. A uniqueness problem

In order to prove our results about normal families of meromorphic func-

tions, we first prove some lemmas necessary below

Lemma 3.2.1. Let f be a transcendental meromorphic function and a a be a
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nonzero complex constant. Let n ∈ N, k, nj, tj ∈ N∗, j = 1, . . . , k satisfy

n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 3.

Then the equation

fn(fn1)(t1) . . . (fnk)(tk) = a

has infinite solutions. Furthermore, if f is a transcendental entire function, the

statement holds when n+
k∑

j=1
nj ⩾

k∑
j=1

tj + 2.

Lemma 3.2.2. Let f be a nonconstant rational function and a be a nonzero

complex constant. Let n ∈ N, k, nj, tj ∈ N∗, j = 1, . . . , k satisfy

nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 2, j = 1, . . . , k.

Then the equation

fn(fn1)(t1) . . . (fnk)(tk) = a

has at least two distinct zeros.

Let f and g be two nonconstant meromorphic functions. Let a and b be two

complex numbers. If g − b = 0 whenever f − a = 0, we write f = a ⇒ g = b.

If f = a ⇒ g = b and g = b ⇒ f = a, we write f = a ⇔ g = b. If f − a

and g− b have the same zeros and poles (counting multiplicity), then we denote

f − a ⇌ g − b. Using this concept we have proved the following result about a

normal criteria for family of meromorphic functions.

Theorem 3.2.3. Let F be a family of meromorphic functions in a complex

domain D ⊂ C. Let a and bbe two complex numbers such that b ̸= 0, let n ∈ N,

nj, tj, k ∈ N∗, (j = 1, 2, . . . , k) satisfy

nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 3 (3.1)

and

fn+n1+···+nk = a ⇔ fn(fn1)(t1) . . . (fnk)(tk) = b (3.2)
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for all f ∈ F . Then F is a normal family. Furthermore, if F is a family of

holomorphic functions, then the statement holds when (3.1) is replaced by one

of the following conditions:

k = 1, n = 0, n1 ⩾ t1 + 1; (3.3)

n ⩾ 1 or k ⩾ 2, nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 2. (3.4)

Let f be a meromorphic funtion, denote

M [f ] := fn(fn1)(t1) . . . (fnk)(tk) và F = fn+n1+···+nk,

here n, n1, ..., nk, t1, ..., tk are positive integers.

Our following theorem is a result about uniqueness problem for meromorphic

functions related to Brück conjecture when f is replaced by F and f ′ by M [f ].

Theorem 3.2.4. Let n ∈ N and k, ni, ti ∈ N∗, i = 1, . . . , k satisfy one of the

following conditions:

1) k = 1, n = 0, n1 ⩾ t1 + 1;

2) n ⩾ 1 or k ⩾ 2, nj ⩾ tj, n+
k∑

j=1

nj ⩾
k∑

j=1

tj + 2.

Let a and b be two finite nonzero values and f be a nonconstant entire function.

If F = a ⇌ M [f ] = b, then
M [f ]− b

F − a
= c,

where c is a nonzero constant.Specially, if a = b then f = c1e
tz, where c1 and t

are nonzero constants and t is satisfies by (tn1)
t1 . . . (tnk)

tk = 1.

As a special case, if we take n = 0, k = 1, t1 = 1 in Theorem 3.2.4, then we

have:

Corollary 3.2.5. Let f be a nonconstant entire function, n ⩾ 2 be an integer,

and F = fn. If F and F ′ share 1 CM, then F ≡ F ′, and f assumes the form

f = cez/n, where c is a nonzero constant.

Note. As stated in the introduction, in 2008, L. Z. Yang and J. L. Zhang

proved a similar result corollary 3.2.5 with condition n ⩾ 7. Thus Theorem

3.2.4 is an improvement of the result of Yang và Zhang.
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CONCLUSION AND RECOMMENDATION

The thesis has studied some form the fundamental theorems in Nevanlinna

- Cartan theory for holomorphic curves on annuli in the case of hypersurfaces

and the uniqueness problem for holomorphic curves on annuli and the entire

functions related to the Brück conjecture.

The thesis has obtained the following results:

1. The first and second fundamental theorems for holomorphic curves on

the annuli in the target cases are hypersurfaces.

2. Two uniqueness theorems for algebraically non-degenerate holomorphic

curves on the annulus sharing sufficiently many hypersurfaces in general position

for Veronese embedding.

3. New normal criteria for family of meromorphic functions on the complex

plane C and prove a result about uniqueness problem for entire functions related

to Brück conjecture.

Recommendation:

Many issues in this direction are in need of research. In the immediate future,

we are interested in the following issues, which are directly related to the results

we have obtained:

1. Study some Second Main Theorem for holomorphic curves on the annuli

into an algebraic variety in Pn(C) in the case of hyperplane or hypersurface.

2. Study uniqueness problem for holomorphic curves on an annulus in the

case of hypersurfaces in general position.

3. Study uniqueness problem for functions or for holomorphic curves based

on second fundamental theorem with the new counting function.
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